Run BigQuery using the metadata CLI
Feature | Status |
---|---|
Stage | PROD |
Metadata | |
Query Usage | |
Data Profiler | |
Data Quality | |
Lineage | |
DBT | |
Supported Versions | -- |
Feature | Status |
---|---|
Lineage | |
Table-level | |
Column-level |
In this section, we provide guides and references to use the BigQuery connector.
Configure and schedule BigQuery metadata and profiler workflows from the OpenMetadata UI:
Requirements
OpenMetadata 0.12 or laterTo deploy OpenMetadata, check the Deployment guides.
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
Python Requirements
To run the BigQuery ingestion, you will need to install:
If you want to run the Usage Connector, you'll also need to install:
GCP Permissions
To execute metadata extraction and usage workflow successfully the user or the service account should have enough access to fetch required data. Following table describes the minimum required permissions
# | GCP Permission | Required For |
---|---|---|
1 | bigquery.datasets.get | Metadata Ingestion |
2 | bigquery.tables.get | Metadata Ingestion |
3 | bigquery.tables.getData | Metadata Ingestion |
4 | bigquery.tables.list | Metadata Ingestion |
5 | resourcemanager.projects.get | Metadata Ingestion |
6 | bigquery.jobs.create | Metadata Ingestion |
7 | bigquery.jobs.listAll | Metadata Ingestion |
8 | datacatalog.taxonomies.get | Fetch Policy Tags |
9 | datacatalog.taxonomies.list | Fetch Policy Tags |
10 | bigquery.readsessions.create | Bigquery Usage & Lineage Workflow |
11 | bigquery.readsessions.getData | Bigquery Usage & Lineage Workflow |
1. Define the YAML Config
This is a sample config for BigQuery:
Source Configuration - Service Connection
hostPort: BigQuery APIs URL. By default the API URL is bigquery.googleapis.com
you can modify this if you have custom implementation of BigQuery.
credentials: You can authenticate with your bigquery instance using either GCS Credentials Path
where you can specify the file path of the service account key or you can pass the values directly by choosing the GCS Credentials Values
from the service account key file.
You can checkout this documentation on how to create the service account keys and download it.
gcsConfig:
1. Passing the raw credential values provided by BigQuery. This requires us to provide the following information, all provided by BigQuery:
- type: Credentials Type is the type of the account, for a service account the value of this field is
service_account
. To fetch this key, look for the value associated with thetype
key in the service account key file. - projectId: A project ID is a unique string used to differentiate your project from all others in Google Cloud. To fetch this key, look for the value associated with the
project_id
key in the service account key file. You can also pass multiple project id to ingest metadata from different BigQuery projects into one service. - privateKeyId: This is a unique identifier for the private key associated with the service account. To fetch this key, look for the value associated with the
private_key_id
key in the service account file. - privateKey: This is the private key associated with the service account that is used to authenticate and authorize access to BigQuery. To fetch this key, look for the value associated with the
private_key
key in the service account file. - clientEmail: This is the email address associated with the service account. To fetch this key, look for the value associated with the
client_email
key in the service account key file. - clientId: This is a unique identifier for the service account. To fetch this key, look for the value associated with the
client_id
key in the service account key file. - authUri: This is the URI for the authorization server. To fetch this key, look for the value associated with the
auth_uri
key in the service account key file. The default value to Auth URI is https://accounts.google.com/o/oauth2/auth. - tokenUri: The Google Cloud Token URI is a specific endpoint used to obtain an OAuth 2.0 access token from the Google Cloud IAM service. This token allows you to authenticate and access various Google Cloud resources and APIs that require authorization. To fetch this key, look for the value associated with the
token_uri
key in the service account credentials file. Default Value to Token URI is https://oauth2.googleapis.com/token. - authProviderX509CertUrl: This is the URL of the certificate that verifies the authenticity of the authorization server. To fetch this key, look for the value associated with the
auth_provider_x509_cert_url
key in the service account key file. The Default value for Auth Provider X509Cert URL is https://www.googleapis.com/oauth2/v1/certs - clientX509CertUrl: This is the URL of the certificate that verifies the authenticity of the service account. To fetch this key, look for the value associated with the
client_x509_cert_url
key in the service account key file.
2. Passing a local file path that contains the credentials:
- gcsCredentialsPath
Taxonomy Project ID (Optional): Bigquery uses taxonomies to create hierarchical groups of policy tags. To apply access controls to BigQuery columns, tag the columns with policy tags. Learn more about how yo can create policy tags and set up column-level access control here
If you have attached policy tags to the columns of table available in Bigquery, then OpenMetadata will fetch those tags and attach it to the respective columns.
In this field you need to specify the id of project in which the taxonomy was created.
Taxonomy Location (Optional): Bigquery uses taxonomies to create hierarchical groups of policy tags. To apply access controls to BigQuery columns, tag the columns with policy tags. Learn more about how yo can create policy tags and set up column-level access control here
If you have attached policy tags to the columns of table available in Bigquery, then OpenMetadata will fetch those tags and attach it to the respective columns.
In this field you need to specify the location/region in which the taxonomy was created.
Usage Location (Optional): Location used to query INFORMATION_SCHEMA.JOBS_BY_PROJECT
to fetch usage data. You can pass multi-regions, such as us
or eu
, or your specific region such as us-east1
. Australia and Asia multi-regions are not yet supported.
- If you prefer to pass the credentials file, you can do so as follows:
- If you want to use ADC authentication for BigQuery you can just leave the GCS credentials empty. This is why they are not marked as required.
Source Configuration - Source Config
The sourceConfig
is defined here:
markDeletedTables: To flag tables as soft-deleted if they are not present anymore in the source system.
includeTables: true or false, to ingest table data. Default is true.
includeViews: true or false, to ingest views definitions.
databaseFilterPattern, schemaFilterPattern, tableFilternPattern: Note that the filter supports regex as include or exclude. You can find examples here
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
Workflow Configuration
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
Advanced Configuration
Connection Options (Optional): Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
Connection Arguments (Optional): Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.
- In case you are using Single-Sign-On (SSO) for authentication, add the
authenticator
details in the Connection Arguments as a Key-Value pair as follows:"authenticator" : "sso_login_url"
- In case you authenticate with SSO using an external browser popup, then add the
authenticator
details in the Connection Arguments as a Key-Value pair as follows:"authenticator" : "externalbrowser"
Workflow Configs for Security Provider
We support different security providers. You can find their definitions here.
Openmetadata JWT Auth
- JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details here.
- You can refer to the JWT Troubleshooting section link for any issues in your JWT configuration. If you need information on configuring the ingestion with other security providers in your bots, you can follow this doc link.
2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.
Query Usage
The Query Usage workflow will be using the query-parser
processor.
After running a Metadata Ingestion workflow, we can run Query Usage workflow. While the serviceName
will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the serviceConnection
details from the server.
1. Define the YAML Config
This is a sample config for BigQuery Usage:
Source Configuration - Source Config
You can find all the definitions and types for the sourceConfig
here.
queryLogDuration: Configuration to tune how far we want to look back in query logs to process usage data.
stageFileLocation: Temporary file name to store the query logs before processing. Absolute file path required.
resultLimit: Configuration to set the limit for query logs
queryLogFilePath: Configuration to set the file path for query logs
2. Run with the CLI
There is an extra requirement to run the Usage pipelines. You will need to install:
After saving the YAML config, we will run the command the same way we did for the metadata ingestion:
Data Profiler
The Data Profiler workflow will be using the orm-profiler
processor.
After running a Metadata Ingestion workflow, we can run Data Profiler workflow. While the serviceName
will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the serviceConnection
details from the server.
1. Define the YAML Config
This is a sample config for the profiler:
Source Configuration - Source Config
You can find all the definitions and types for the sourceConfig
here.
generateSampleData: Option to turn on/off generating sample data.
profileSample: Percentage of data or no. of rows we want to execute the profiler and tests on.
threadCount: Number of threads to use during metric computations.
processPiiSensitive: Optional configuration to automatically tag columns that might contain sensitive information.
confidence: Set the Confidence value for which you want the column to be marked
timeoutSeconds: Profiler Timeout in Seconds
databaseFilterPattern: Regex to only fetch databases that matches the pattern.
schemaFilterPattern: Regex to only fetch tables or databases that matches the pattern.
tableFilterPattern: Regex to only fetch tables or databases that matches the pattern.
Processor Configuration
Choose the orm-profiler
. Its config can also be updated to define tests from the YAML itself instead of the UI:
tableConfig: tableConfig
allows you to set up some configuration at the table level.
- You can learn more about how to configure and run the Profiler Workflow to extract Profiler data and execute the Data Quality from here
2. Prepare the Profiler DAG
Here, we follow a similar approach as with the metadata and usage pipelines, although we will use a different Workflow class:
Import necessary modules
The ProfilerWorkflow
class that is being imported is a part of a metadata orm_profiler framework, which defines a process of extracting Profiler data.
Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG.
Default arguments for all tasks in the Airflow DAG.
- Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout.
- config: Specifies config for the profiler as we prepare above.
- metadata_ingestion_workflow(): This code defines a function
metadata_ingestion_workflow()
that loads a YAML configuration, creates aProfilerWorkflow
object, executes the workflow, checks its status, prints the status to the console, and stops the workflow.
- DAG: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements
- For more Airflow DAGs creation details visit here.
Lineage
You can learn more about how to ingest lineage here.
dbt Integration
You can learn more about how to ingest dbt models' definitions and their lineage here.