connectors

No menu items for this category

Run the BigQuery Connector Externally

FeatureStatus
StagePROD
Metadata
Query Usage
Data Profiler
Data Quality
Stored Procedures
Owners
TagsPolicy Tags
DBT
Supported Versions--
FeatureStatus
Lineage
Table-level
Column-level

In this section, we provide guides and references to use the BigQuery connector.

Configure and schedule BigQuery metadata and profiler workflows from the OpenMetadata UI:

To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.

If, instead, you want to manage your workflows externally on your preferred orchestrator, you can check the following docs to run the Ingestion Framework anywhere.

OpenMetadata 0.12 or later

To deploy OpenMetadata, check the Deployment guides.

To run the BigQuery ingestion, you will need to install:

If you want to run the Usage Connector, you'll also need to install:

To execute metadata extraction and usage workflow successfully the user or the service account should have enough access to fetch required data. Following table describes the minimum required permissions

#GCP PermissionRequired For
1bigquery.datasets.getMetadata Ingestion
2bigquery.tables.getMetadata Ingestion
3bigquery.tables.getDataMetadata Ingestion
4bigquery.tables.listMetadata Ingestion
5resourcemanager.projects.getMetadata Ingestion
6bigquery.jobs.createMetadata Ingestion
7bigquery.jobs.listAllMetadata Ingestion
8bigquery.routines.getStored Procedure
9bigquery.routines.listStored Procedure
10datacatalog.taxonomies.getFetch Policy Tags
11datacatalog.taxonomies.listFetch Policy Tags
12bigquery.readsessions.createBigquery Usage & Lineage Workflow
13bigquery.readsessions.getDataBigquery Usage & Lineage Workflow

If the user has External Tables, please attach relevant permissions needed for external tables, alongwith the above list of permissions.

This is a sample config for BigQuery:

hostPort: BigQuery APIs URL. By default the API URL is bigquery.googleapis.com you can modify this if you have custom implementation of BigQuery.

credentials: You can authenticate with your bigquery instance using either GCP Credentials Path where you can specify the file path of the service account key or you can pass the values directly by choosing the GCP Credentials Values from the service account key file.

You can checkout this documentation on how to create the service account keys and download it.

gcpConfig:

1. Passing the raw credential values provided by BigQuery. This requires us to provide the following information, all provided by BigQuery:

  • type: Credentials Type is the type of the account, for a service account the value of this field is service_account. To fetch this key, look for the value associated with the type key in the service account key file.
  • projectId: A project ID is a unique string used to differentiate your project from all others in Google Cloud. To fetch this key, look for the value associated with the project_id key in the service account key file. You can also pass multiple project id to ingest metadata from different BigQuery projects into one service.
  • privateKeyId: This is a unique identifier for the private key associated with the service account. To fetch this key, look for the value associated with the private_key_id key in the service account file.
  • privateKey: This is the private key associated with the service account that is used to authenticate and authorize access to BigQuery. To fetch this key, look for the value associated with the private_key key in the service account file.
  • clientEmail: This is the email address associated with the service account. To fetch this key, look for the value associated with the client_email key in the service account key file.
  • clientId: This is a unique identifier for the service account. To fetch this key, look for the value associated with the client_id key in the service account key file.
  • authUri: This is the URI for the authorization server. To fetch this key, look for the value associated with the auth_uri key in the service account key file. The default value to Auth URI is https://accounts.google.com/o/oauth2/auth.
  • tokenUri: The Google Cloud Token URI is a specific endpoint used to obtain an OAuth 2.0 access token from the Google Cloud IAM service. This token allows you to authenticate and access various Google Cloud resources and APIs that require authorization. To fetch this key, look for the value associated with the token_uri key in the service account credentials file. Default Value to Token URI is https://oauth2.googleapis.com/token.
  • authProviderX509CertUrl: This is the URL of the certificate that verifies the authenticity of the authorization server. To fetch this key, look for the value associated with the auth_provider_x509_cert_url key in the service account key file. The Default value for Auth Provider X509Cert URL is https://www.googleapis.com/oauth2/v1/certs
  • clientX509CertUrl: This is the URL of the certificate that verifies the authenticity of the service account. To fetch this key, look for the value associated with the client_x509_cert_url key in the service account key file.

2. Passing a local file path that contains the credentials:

  • gcpCredentialsPath

Taxonomy Project ID (Optional): Bigquery uses taxonomies to create hierarchical groups of policy tags. To apply access controls to BigQuery columns, tag the columns with policy tags. Learn more about how yo can create policy tags and set up column-level access control here

If you have attached policy tags to the columns of table available in Bigquery, then OpenMetadata will fetch those tags and attach it to the respective columns.

In this field you need to specify the id of project in which the taxonomy was created.

Taxonomy Location (Optional): Bigquery uses taxonomies to create hierarchical groups of policy tags. To apply access controls to BigQuery columns, tag the columns with policy tags. Learn more about how yo can create policy tags and set up column-level access control here

If you have attached policy tags to the columns of table available in Bigquery, then OpenMetadata will fetch those tags and attach it to the respective columns.

In this field you need to specify the location/region in which the taxonomy was created.

Usage Location (Optional): Location used to query INFORMATION_SCHEMA.JOBS_BY_PROJECT to fetch usage data. You can pass multi-regions, such as us or eu, or your specific region such as us-east1. Australia and Asia multi-regions are not yet supported.

  • If you prefer to pass the credentials file, you can do so as follows:
  • If you want to use ADC authentication for BigQuery you can just leave the GCP credentials empty. This is why they are not marked as required.

The sourceConfig is defined here:

markDeletedTables: To flag tables as soft-deleted if they are not present anymore in the source system.

includeTables: true or false, to ingest table data. Default is true.

includeViews: true or false, to ingest views definitions.

databaseFilterPattern, schemaFilterPattern, tableFilterPattern: Note that the filter supports regex as include or exclude. You can find examples here

To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest.

The main property here is the openMetadataServerConfig, where you can define the host and security provider of your OpenMetadata installation.

Logger Level

You can specify the loggerLevel depending on your needs. If you are trying to troubleshoot an ingestion, running with DEBUG will give you far more traces for identifying issues.

JWT Token

JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details here.

You can refer to the JWT Troubleshooting section link for any issues in your JWT configuration.

SSL Configuration

If you have added SSL to the OpenMetadata server, then you will need to handle the certificates when running the ingestion too. You can either set verifySSL to ignore, or have it as validate, which will require you to set the sslConfig.certificatePath with a local path where your ingestion runs that points to the server certificate file.

Find more information on how to troubleshoot SSL issues here.

Connection Options (Optional): Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.

Connection Arguments (Optional): Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.

  • In case you are using Single-Sign-On (SSO) for authentication, add the authenticator details in the Connection Arguments as a Key-Value pair as follows: "authenticator" : "sso_login_url"
filename.yaml

First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:

Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.

The Query Usage workflow will be using the query-parser processor.

After running a Metadata Ingestion workflow, we can run Query Usage workflow. While the serviceName will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the serviceConnection details from the server.

This is a sample config for BigQuery Usage:

You can find all the definitions and types for the sourceConfig here.

queryLogDuration: Configuration to tune how far we want to look back in query logs to process usage data.

stageFileLocation: Temporary file name to store the query logs before processing. Absolute file path required.

resultLimit: Configuration to set the limit for query logs

queryLogFilePath: Configuration to set the file path for query logs

To specify where the staging files will be located.

Note that the location is a directory that will be cleaned at the end of the ingestion.

The main property here is the openMetadataServerConfig, where you can define the host and security provider of your OpenMetadata installation.

Logger Level

You can specify the loggerLevel depending on your needs. If you are trying to troubleshoot an ingestion, running with DEBUG will give you far more traces for identifying issues.

JWT Token

JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details here.

You can refer to the JWT Troubleshooting section link for any issues in your JWT configuration.

SSL Configuration

If you have added SSL to the OpenMetadata server, then you will need to handle the certificates when running the ingestion too. You can either set verifySSL to ignore, or have it as validate, which will require you to set the sslConfig.certificatePath with a local path where your ingestion runs that points to the server certificate file.

Find more information on how to troubleshoot SSL issues here.

filename.yaml

After saving the YAML config, we will run the command the same way we did for the metadata ingestion:

The Data Profiler workflow will be using the orm-profiler processor.

After running a Metadata Ingestion workflow, we can run Data Profiler workflow. While the serviceName will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the serviceConnection details from the server.

This is a sample config for the profiler:

You can find all the definitions and types for the sourceConfig here.

generateSampleData: Option to turn on/off generating sample data.

profileSample: Percentage of data or no. of rows we want to execute the profiler and tests on.

threadCount: Number of threads to use during metric computations.

processPiiSensitive: Optional configuration to automatically tag columns that might contain sensitive information.

confidence: Set the Confidence value for which you want the column to be marked

timeoutSeconds: Profiler Timeout in Seconds

databaseFilterPattern: Regex to only fetch databases that matches the pattern.

schemaFilterPattern: Regex to only fetch tables or databases that matches the pattern.

tableFilterPattern: Regex to only fetch tables or databases that matches the pattern.

Choose the orm-profiler. Its config can also be updated to define tests from the YAML itself instead of the UI:

tableConfig: tableConfig allows you to set up some configuration at the table level.

To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest.

The main property here is the openMetadataServerConfig, where you can define the host and security provider of your OpenMetadata installation.

Logger Level

You can specify the loggerLevel depending on your needs. If you are trying to troubleshoot an ingestion, running with DEBUG will give you far more traces for identifying issues.

JWT Token

JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details here.

You can refer to the JWT Troubleshooting section link for any issues in your JWT configuration.

SSL Configuration

If you have added SSL to the OpenMetadata server, then you will need to handle the certificates when running the ingestion too. You can either set verifySSL to ignore, or have it as validate, which will require you to set the sslConfig.certificatePath with a local path where your ingestion runs that points to the server certificate file.

Find more information on how to troubleshoot SSL issues here.

filename.yaml
  • You can learn more about how to configure and run the Profiler Workflow to extract Profiler data and execute the Data Quality from here

After saving the YAML config, we will run the command the same way we did for the metadata ingestion:

Note now instead of running ingest, we are using the profile command to select the Profiler workflow.

You can learn more about how to ingest lineage here.

You can learn more about how to ingest dbt models' definitions and their lineage here.