connectors

No menu items for this category

Run the Oracle Connector Externally

FeatureStatus
StagePROD
Metadata
Query Usage
Data Profiler
Data Quality
Stored Procedures
Owners
Tags
DBT
Supported Versions12c, 18c, 19c, and 21c
FeatureStatus
Lineage
Table-level
Column-level

In this section, we provide guides and references to use the Oracle connector.

Configure and schedule Oracle metadata and profiler workflows from the OpenMetadata UI:

To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.

If, instead, you want to manage your workflows externally on your preferred orchestrator, you can check the following docs to run the Ingestion Framework anywhere.

OpenMetadata 0.12 or later

To deploy OpenMetadata, check the Deployment guides.

Note: To retrieve metadata from an Oracle database, the python-oracledb library can be utilized, which provides support for versions 12c, 18c, 19c, and 21c.

To ingest metadata from oracle user must have CREATE SESSION privilege for the user.

With just these permissions, your user should be able to ingest the schemas, but not the tables inside them. To get the tables, you should grant SELECT permissions to the tables you are interested in. E.g.,

You can find further information here. Note that there is no routine out of the box in Oracle to grant SELECT to a full schema.

To run the Oracle ingestion, you will need to install:

All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Oracle.

In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.

The workflow is modeled around the following JSON Schema

This is a sample config for Oracle:

username: Specify the User to connect to Oracle. It should have enough privileges to read all the metadata.

password: Password to connect to Oracle.

hostPort: Enter the fully qualified hostname and port number for your Oracle deployment in the Host and Port field.

oracleConnectionType :

  • oracleServiceName: The Oracle Service name is the TNS alias that you give when you remotely connect to your database and this Service name is recorded in tnsnames.
  • databaseSchema: The name of the database schema available in Oracle that you want to connect with.
  • Oracle instant client directory: The directory pointing to where the instantclient binaries for Oracle are located. In the ingestion Docker image we provide them by default at /instantclient. If this parameter is informed (it is by default), we will run the thick oracle client. We are shipping the binaries for ARM and AMD architectures from here and here for the instant client version 19.

databaseName: Optional name to give to the database in OpenMetadata. If left blank, we will use default as the database name. It is recommended to use the database name same as the SID, This ensures accurate results and proper identification of tables during profiling, data quality checks and dbt workflow.

The sourceConfig is defined here:

markDeletedTables: To flag tables as soft-deleted if they are not present anymore in the source system.

includeTables: true or false, to ingest table data. Default is true.

includeViews: true or false, to ingest views definitions.

databaseFilterPattern, schemaFilterPattern, tableFilterPattern: Note that the filter supports regex as include or exclude. You can find examples here

To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest.

The main property here is the openMetadataServerConfig, where you can define the host and security provider of your OpenMetadata installation.

Logger Level

You can specify the loggerLevel depending on your needs. If you are trying to troubleshoot an ingestion, running with DEBUG will give you far more traces for identifying issues.

JWT Token

JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details here.

You can refer to the JWT Troubleshooting section link for any issues in your JWT configuration.

SSL Configuration

If you have added SSL to the OpenMetadata server, then you will need to handle the certificates when running the ingestion too. You can either set verifySSL to ignore, or have it as validate, which will require you to set the sslConfig.certificatePath with a local path where your ingestion runs that points to the server certificate file.

Find more information on how to troubleshoot SSL issues here.

Connection Options (Optional): Enter the details for any additional connection options that can be sent to Athena during the connection. These details must be added as Key-Value pairs.

Connection Arguments (Optional): Enter the details for any additional connection arguments such as security or protocol configs that can be sent to Athena during the connection. These details must be added as Key-Value pairs.

  • In case you are using Single-Sign-On (SSO) for authentication, add the authenticator details in the Connection Arguments as a Key-Value pair as follows: "authenticator" : "sso_login_url"
filename.yaml

First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:

Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.

The Data Profiler workflow will be using the orm-profiler processor.

After running a Metadata Ingestion workflow, we can run Data Profiler workflow. While the serviceName will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the serviceConnection details from the server.

This is a sample config for the profiler:

You can find all the definitions and types for the sourceConfig here.

generateSampleData: Option to turn on/off generating sample data.

profileSample: Percentage of data or no. of rows we want to execute the profiler and tests on.

threadCount: Number of threads to use during metric computations.

processPiiSensitive: Optional configuration to automatically tag columns that might contain sensitive information.

confidence: Set the Confidence value for which you want the column to be marked

timeoutSeconds: Profiler Timeout in Seconds

databaseFilterPattern: Regex to only fetch databases that matches the pattern.

schemaFilterPattern: Regex to only fetch tables or databases that matches the pattern.

tableFilterPattern: Regex to only fetch tables or databases that matches the pattern.

Choose the orm-profiler. Its config can also be updated to define tests from the YAML itself instead of the UI:

tableConfig: tableConfig allows you to set up some configuration at the table level.

To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest.

The main property here is the openMetadataServerConfig, where you can define the host and security provider of your OpenMetadata installation.

Logger Level

You can specify the loggerLevel depending on your needs. If you are trying to troubleshoot an ingestion, running with DEBUG will give you far more traces for identifying issues.

JWT Token

JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details here.

You can refer to the JWT Troubleshooting section link for any issues in your JWT configuration.

SSL Configuration

If you have added SSL to the OpenMetadata server, then you will need to handle the certificates when running the ingestion too. You can either set verifySSL to ignore, or have it as validate, which will require you to set the sslConfig.certificatePath with a local path where your ingestion runs that points to the server certificate file.

Find more information on how to troubleshoot SSL issues here.

filename.yaml
  • You can learn more about how to configure and run the Profiler Workflow to extract Profiler data and execute the Data Quality from here

After saving the YAML config, we will run the command the same way we did for the metadata ingestion:

Note now instead of running ingest, we are using the profile command to select the Profiler workflow.

You can learn more about how to ingest lineage here.